(-)-Delta9-tetrahydrocannabinol antagonizes the peripheral cannabinoid receptor-mediated inhibition of adenylyl cyclase.

نویسندگان

  • M Bayewitch
  • M H Rhee
  • T Avidor-Reiss
  • A Breuer
  • R Mechoulam
  • Z Vogel
چکیده

(-)-Delta9-Tetrahydrocannabinol ((-)-Delta9-THC) is the major active psychotropic component of the marijuana plant, Cannabis sativa. The membrane proteins that have been found to bind this material or its derivatives have been called the cannabinoid receptors. Two GTP-binding protein-coupled cannabinoid receptors have been cloned. CB1 or the neuronal cannabinoid receptor is found mostly in neuronal cells and tissues while CB2 or the peripheral cannabinoid receptor has been detected in spleen and in several cells of the immune system. It has previously been shown that activation of CB1 or CB2 receptors by cannabinoid agonists inhibits adenylyl cyclase activity. Utilizing Chinese hamster ovary cells and COS cells transfected with the cannabinoid receptors we report that (-)-Delta9-THC binds to both receptors with similar affinity. However, in contrast to its capacity to serve as an agonist for the CB1 receptor, (-)-Delta9-THC was only able to induce a very slight inhibition of adenylyl cyclase at the CB2 receptor. Morever, (-)-Delta9-THC antagonizes the agonist-induced inhibition of adenylyl cyclase mediated by CB2. Therefore, we conclude that (-)-Delta9-THC constitutes a weak antagonist for the CB2 receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-term administration of Delta9-tetrahydrocannabinol desensitizes CB1-, adenosine A1-, and GABAB-mediated inhibition of adenylyl cyclase in mouse cerebellum.

Cannabinoid CB(1) receptors in the cerebellum mediate the inhibitory effects of Delta(9)-tetrahydrocannabinol (THC) on motor coordination. Intracellular effects of CB(1) receptors include inhibition of adenylyl cyclase via activation of G(i/o) proteins. There is evidence for the convergence of other neuronal receptors, such as adenosine A(1) and GABA(B), with the cannabinoid system on this sign...

متن کامل

SR 144528, an antagonist for the peripheral cannabinoid receptor that behaves as an inverse agonist.

In the present report, we investigated in detail the effects of SR 144528, a selective antagonist of the peripheral cannabinoid receptor (CB2), on two well-characterized functions mediated by CB2: the induction of the early response gene krox24 and the inhibition of adenylyl cyclase. We generated Chinese hamster ovary cells doubly transfected with human CB2 and a luciferase reporter gene linked...

متن کامل

Cannabinoid agonist signal transduction in rat brain: comparison of cannabinoid agonists in receptor binding, G-protein activation, and adenylyl cyclase inhibition.

To investigate differences in agonist affinity, potency, and efficacy across rat brain regions, five representative cannabinoid compounds were investigated in membranes from three different rat brain regions for their ability to maximally stimulate [(35)S]guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) binding and bind to cannabinoid receptors (measured by inhibition of [(3)H]antagonist binding...

متن کامل

Cannabinoid inhibition of adenylate cyclase-mediated signal transduction and interleukin 2 (IL-2) expression in the murine T-cell line, EL4.IL-2.

Cannabinoid receptors negatively regulate adenylate cyclase through a pertussis toxin-sensitive GTP-binding protein. In the present studies, signaling via the adenylate cyclase/cAMP pathway was investigated in the murine thymoma-derived T-cell line, EL4.IL-2. Northern analysis of EL4.IL-2 cells identified the presence of 4-kilobase CB2 but not CB1 receptor-subtype mRNA transcripts. Southern ana...

متن کامل

Cannabinoids inhibit the formation of new synapses between hippocampal neurons in culture.

The principal psychoactive ingredient in marijuana, Delta(9)-tetrahydrocannabinol, has been shown to inhibit adenylyl cyclase activity in vitro and can lead to impairment of memory in vivo. cAMP-induced changes in synaptic plasticity are thought to underlie memory formation. We examined the effects of cannabinoid receptor agonists on forskolin-induced formation of new synapses between rat hippo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 271 17  شماره 

صفحات  -

تاریخ انتشار 1996